Thrust Stand Measurements of an RMF-FRC Thruster with Continuous Power System

Kenneth E. Miller, James Prager*, Alex Henson, Kyle McELeney, Joshua Woods, Christopher Sercel, Tate Gill, Eric Viges, Benjamin Jorns

*prager@eagleharbortech.com

EAGLE HARBOR TECHNOLOGIES

Introduction

Eagle Harbor Technologies, Inc. (EHT) developed a continuously operating repetitively-pulsed power system for the University of Michigan (UM) Rotating Magnetic Field (RMF) – Field-Reversed Configuration (FRC) Thruster. EHT leveraged a previously designed resonant full bridge in single-burst mode to develop a continuously operating repetitively-pulsed system at 4 kW of average power. The EHT solid-state power system can drive peak currents of ±2 kA at 500 kHz in the inductive RMF coils. UM integrated the power system with the thruster and conducted performance measurements in their Large Vacuum Test Facility. With the EHT power system they demonstrated parametrical control of the thruster performance (thrust, specific impulse, and efficiency) by varying the plasma input energy, neutral flow rate, and applied magnetic field. The new EHT power system and UM thruster upgrades improved the coupling efficiencies from ~3% to more than 50% and active specific impulses approaching 1000 s, while allowing for a direct thrust measurement. This is the first direct performance measurement of a continuously operating RMF–FRC Thruster using a standard inverted-pendulum thrust stand in space-like conditions.

RMF-FRC Thruster Concept

The Gen 1 thruster power system was a charged capacitor and switched that was closed into the inductive antenna. The current and voltage waveforms in the antenna were an underdamped LCR circuit. This circuit was capable of delivering 2 J/pulse and could operate continuously at up to 1.2 kW.

EHT developed solid-state full bridge to drive a resonant LC network at the resonant frequency. The primary inductance is the RMF antenna and a tuning capacitor was added for an operational frequency of 400 kHz. EHT had previously built similar systems and the new work focused on building a continuously operating repetitively pulsed system that could operate at 4 kW. Ultimately, this system output 4 kA pk-pk in 200 µs bursts of 400 kHz RF. When operated at half current, it delivered 20 J/pulse at 2 kW.

UM RMF-FRC Thruster (V2)

UM constructed a second generation thruster out of G10/FRP to minimize UM RMF-FRC Thruster (V2)

UM Large Vacuum Test Facility

The vacuum chamber (6 m x 9 m) is cryogenically pumped (13 TM120i Cryopumps and 6 PHPK Cryomech pumps) with measured speeds up to 520 K/sec Xe. The facility can process up to 100 kW continuous power and contains an inverted-pendulum thrust stand that was operated in null mode.

Thrust Measurements

The thruster was operated at 75 Hz for 1-5 minutes. Max energy delivered to plasma is 20 J, which is likely to increase at higher currents. Coupling efficiency near 50%. Major driver is the flow rate (gas density).

Conclusion

UM conducted first thrust stand measurement of CW RMF-FRC thruster in space-like conditions using an EHT RMF power system. The EHT power system was operated up to 4 kW continuous with repetitive 200 µs bursts of 4 kA pk-pk with up to 500 kHz RF. UM characterized thruster performance with the damped LC circuit and EHT power system and showed improved coupling from 3% to 50% and improved thrust from unmeasurable to 8 mN (543 mN ‘active’).

In future work, EHT plans to implement water cooling to increase the average power which should increases gas efficiency, specific impulse and average thrust. UM plans to optimize the magnetic field and gas injection schemes. For more info: http://www.eagleharbortech.com/

Acknowledgment

This work was supported by a USAF SBIR (FA8649-20-P-0483).